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Abstract
An analysis of symmetric function theory is given from the perspective of the
underlying Hopf and bi-algebraic structures. These are presented explicitly
in terms of standard symmetric function operations. Particular attention is
focused on Laplace pairing, Sweedler cohomology for 1- and 2-cochains and
twisted products (Rota cliffordizations) induced by branching operators in the
symmetric function context. The latter are shown to include the algebras of
symmetric functions of orthogonal and symplectic type. A commentary on
related issues in the combinatorial approach to quantum field theory is given.
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Mathematics Subject Classification: 05E05, 16W30, 20G10, 11E57

1. Introduction

The symmetric group, and its role in representation theory and the related symmetric
polynomials, is central to many descriptions of physical phenomena, from classical through
to statistical and quantum domains. The present work is an initial attempt to synthesize
aspects of symmetric function theory from the view point of the structure theory of underlying
Hopf algebras and bialgebras. That such a deeper framework is available is well recognized
(for references see below). However, our aim is to exploit the Hopf algebra theory as fully
as possible. Specifically, our interest is in deformed products and coproducts, and their
characterization by cohomological techniques in the context of symmetric functions.

There are several motivations for an approach of this nature. In the first place, the
symmetric functions provide a concrete arena and convenient laboratory for the structures
of interest suggested by Hopf algebras. Furthermore, the Hopf versions of symmetric
function interrelationships confer systematic explanatory insights, and considerable scope
for generalizations. Last but not least, it is our intention to provide specific material to an
audience of mathematical physicists and other practitioners, for whom it is valuable to meld
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concrete constructs with abstract developments, which we feel are of abiding importance in
several areas of application.

Our own primary motivation for the present study is that symmetric functions may well
serve as a simplified model for combinatorial approaches to quantum field theory (QFT).
The triply iterated structure seen in QFT is perfectly mirrored in symmetric functions.
Questions such as time versus normal ordering, and renormalization, can be framed in abstract
combinatorial and algebraic terms (for references see below). The precise analogues in
symmetric functions should be concrete and calculable, and may serve as a germ to understand
the more complex QFT setting. This work provides the groundwork for such a study.

The outline of this paper is as follows. An analysis of symmetric function theory is
developed, from the perspective of the underlying Hopf and bi-algebraic structures. These
are presented explicitly in terms of standard symmetric function notation (section 2). The
implications of Laplace pairings for symmetric function operations and expansions are
detailed, and exemplified for the case of Kostka matrices (section 2). In section 3, Sweedler’s
cohomology (for references see below) is discussed, with emphasis on the analysis of 1- and
2-cochains, cocycle conditions and coboundaries, and these are shown to control deformed
products via Rota cliffordization (section 4). Associative cliffordizations (derived from
2-cocycles, modulo a 2-coboundary) include cases isomorphic to standard multiplication
(but non-isomorphic as augmented algebras), and also the Newell–Littlewood product for
symmetric functions of orthogonal and symplectic type. The relation between the latter
and the standard outer symmetric function algebra is established, using certain classes of
branching operators associated with symmetric function infinite series, whose properties are
discussed. These include some of the so-called ‘remarkable identities’ known for these series
from applications to representation theory. Finally, an appendix on the elements of λ-rings for
the explicit case of symmetric functions is included. The paper concludes with a discussion
of the main results, the outlook for the approach and further elaboration of the links between
the above constructs and the combinatorial approach to QFT.

2. The Hopf algebra of symmetric functions

2.1. Background and notation

As mentioned above, we wish to develop aspects of the theory of symmetric functions wherein
the underlying Hopf structures, or at least bialgebraic structures, are exploited. It is well known
that the symmetric functions form a Hopf algebra [40, 41, 44, 47]. However, much of the
literature uses abstract λ-ring notation (see the appendix) and is hence not easily appreciated
by a practitioner. The abstract approach presented in [36, 39] is designed for the framework
of quasi-symmetric functions and the permutation group. Although some of the present Hopf
and bi-algebras are factor algebras, the technical complications of this much more general
setting obscure the explicit approach to symmetric functions which we espouse.

In particular, our interest focuses on cliffordization and other deformed products and
coproducts. Cliffordization was introduced by Gian-Carlo Rota and Joel Stein [40], but is
related to a Drinfeld twist [9] in the sense of Sweedler [46]. From Sweedler’s approach, one
learns that many properties of a deformed product can be characterized by cohomological
methods. We are going to employ this for symmetric functions. The paper of Rota and Stein,
loc cit, has as its main motivation the introduction of plethystic algebras in a very general
setting. However, in the language of letter-place superalgebras, it is again difficult to access
concrete calculations in terms appreciated by practitioners. The approach by Thibon [47]
and Scharf and Thibon [44] does use the Hopf structure, however, without exploiting Hopf
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algebra theory (in fact making only perfunctory use of the additional coalgebra structures).
For reasons of accessibility, and for a reasonably self-contained presentation, we therefore
introduce Hopf- and bi-algebras for symmetric functions in a self-consistent manner here. For
a QFT-based account of combinatorial issues entering into generating functional formulations,
see [9, 10]. At several points in what follows, relevant analogies will be pointed out (see also
the concluding remarks).

We use mainly the notation and definitions of Macdonald [35]. The Z-graded space of
symmetric functions is denoted as � = ⊕n�

n where the �n are those subspaces having
n variables (x1, x2, . . . , xn). A partition of an integer is given either as a non-increasing
list of its parts with possible trailing zeros λ = (λ1, . . . , λs), using round parentheses, or
may be given as λ = [r1, . . . , rn] = 1r1 2r2 . . . nrn where the ri count the occurrences of
parts i in λ. The transposed or conjugated partition λ′ is obtained by mirroring the Ferrer’s
diagram at the main diagonal. The length of a partition �(λ) is the number of its (nonzero)
parts, and the weight |λ| or ωλ is given by the sum of its parts, λ1 + λ2 + · · · + λs =
|λ| = 1r1 + 2r2 + · · · + nrn. A further way to describe partitions is given by Frobenius
notation. This gives the length of ‘arms’ αi and ‘legs’ βi of a diagram of a partition
measured from the main diagonal. The length—number of boxes—of the main diagonal
is the Frobenius rank r of a partition, λ = (α1, . . . , αr | β1, . . . , βr). Thus, for example
λ = (5, 4, 2, 2, 2, 1) = [1, 3, 0, 1, 1, 0, . . .] = (4, 2 | 5, 3).

It is convenient to introduce various bases in the ring �. The complete symmetric
functions will be denoted as hλ = hλ1 . . . hλs

with generating function H(t) = ∑
n hnt

n =∏∞
i=1(1 − xit)

−1. The elementary symmetric functions are defined as eλ = eλ1 . . . eλs
with

generating function E(t) = ∑
n ent

n = ∏∞
i=1(1 + xit). Note that the hr are represented by

a diagram with a single row, and the er as a single column. For the definition of further
Schur function series, see below. We need furthermore the monomial symmetric functions
mα = ∑

w∈Sn
x

α1
w(1) . . . x

αr

w(r), and the power sum symmetric functions pλ = pλ1 . . . pλr
, where

pn = ∑
xn

i . Note that the pλ form a Q-basis only, but see [22]. The most important basis for
applications is that of Schur or S-functions, denoted as sλ. Schur functions (also homogenous
symmetric polynomials) can be defined via the Jacobi–Trudi determinantal formulae from the
complete or elementary symmetric functions, or as a ratio of a determinant of monomials
with the van der Monde determinant (see [35]). Occasionally it is convenient to adopt the
Littlewood notation {λ} for the Schur function sλ.

2.2. Addition, products and plethysm

Reference to the ‘ring’ of symmetric functions amounts to saying that there are two mutually
compatible binary operations. The addition is the conventional addition of polynomial
functions and the multiplication, the conventional product of polynomial functions, is the
so-called outer product of symmetric functions. In terms of Schur functions it is described by
the well-known Littlewood–Richardson rule on the diagrams of the factors:

M(sλ ⊗ sµ) = sλ · sµ =
∑

ν

Cν
λµsν sλ · sµ = sµ · sλ (2.1)

wherein the dot will sometimes be omitted; the capital M is retained to denote the outer product
map. The unit for this product 1M is the constant Schur function, corresponding to the empty or
null partition s0 = 1, sometimes just denoted as 1 in what follows. The Littlewood–Richardson
coefficients Cν

λµ = Cν
µλ may be addressed as a multiplication table, with non-negative integer

coefficients since they count the number of lattice paths from ν to λ under some restrictions
imposed by µ or vice versa. The coefficient is zero unless |ν| = |λ| + |µ|.
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There is another product on symmetric functions, the inner product, denoted by lower
case m or �, which is displayed most conveniently in the power sum basis

m(pλ ⊗ pµ) = pλ � pµ = δλµzλpλ (2.2)

where zλ = ∏
iri ri! with λ = [r1, . . . , rn] (and z(n) ≡ zn = n). The unit for the inner product

can be given in the power sum basis as

1m :=
∑

n

pn

zn

since 1m � pi :=
∑

n

pn

zn

� pi =
∑

n

δnizi

zn

pi = pi. (2.3)

Alternatively, the unit reads in the Schur function basis

1m =
∑
n�0

s(n) =
∑
n�0

hn. (2.4)

A variation on the outer multiplication is the notion of symmetric function (right or left) skew
defined for Schur functions by

sλ/µ =
∑

ν

sνC
λ
νµ sµ\λ =

∑
ν

Cλ
µνsν sλ/µ = sµ\λ (2.5)

for which necessarily |λ| � |µ| (there is no corresponding inner skew because the
corresponding structure coefficients for the inner multiplication are totally symmetrical).

Besides addition and the two products, one can define composition or outer plethysm,
denoted as ◦, on symmetric functions. This reads in terms of power sums as

g ◦ pn = g
(
xn

1 , xn
2 , . . .

)
(=pn ◦ g) pn ◦ pm = pnm. (2.6)

Finally, for the definition of inner plethysm in a Hopf algebra approach see Scharf and Thibon
[44]. All connectivities will play a joint role in what follows.

2.3. Schur scalar product

It is convenient to introduce a scalar product on symmetric functions. The prominent role
which the Schur functions play is reflected in that they form an orthonormal basis with respect
to the scalar product (· | ·), by definition

(sλ | sµ) = δλµ. (2.7)

Furthermore, the pλ form an orthogonal basis only,

(pλ | pµ) = zλδλµ (2.8)

with zλ as in (2.2). The scalar product allows us to define dual elements in a unique way3.
Hence, any symmetric function f can be expanded into a basis, for example, in the Schur
function basis or the power sum basis

f =
∑

λ

(sλ | f )sλ =
∑

λ

(pλ | f )

zλ

pλ. (2.9)

The scalar product can be used to define adjoints. If F is an operator on the space of
symmetric functions, then we define (sλ | F(sµ)) = (G(sλ) | sµ). In operator theory G would
be denoted as F ∗, but we will have occasion to use several generic maps where the adjoints
have their own names.

3 In any finite collection ⊕f inite�
n which has to be dense in the limit n → ∞.
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2.4. Variables versus tensor products

We have generally omitted the explicit variables in functions such as sλ. However, we may
reconsider this habit as follows. We have until now used only one species of variables, namely
the linearly ordered set {xi}. We may collect these into a (possibly infinite) set or formal
variable X. All of the above statements having no variable may then be re-read as ‘...with
all variables from the set X’. However, it turns out that all notions make perfect sense if the
symmetric functions are considered as operators on the formal variable X, see [35] chapter
1 appendix. This is the so-called λ-ring notation (see the appendix)4. However, one should
note the important change in the realm of the statements made in this language. We are now
ready to introduce a second set of variables Y disjoint from X, and we can consider symmetric
functions on formal sums X + Y or formal products XY , namely the sets {xi, yj } or {xiyj }. It
is well known that one can give an isomorphism θ between such multi-variable settings, and
tensor products on End �∼= � ⊗ � since �∼= �∗,

θ : F(X)G(Y ) → F(X) ⊗ G(X) ∈ � ⊗ �. (2.10)

In other words, the X and Y keep track of the tensor slot in a tensor product. This is the origin
of the letter-place idea promoted in [22]. For our purpose, it is enough to use this identification
to and fro for convenience, and to make contact with the literature.

As a further step, we consider tensor products of � forming the tensor algebra
Tens[�] ≡ �⊗ = ⊕n�

⊗n

. Due to the identification made by the Schur scalar product,
we find that endormorphisms of symmetric functions are elements of � ⊗ �, with the second
factor seen as dual. The endomorphic product is then composition

◦ : (� ⊗ �) ⊗ (� ⊗ �) → (� ⊗ �)
(2.11)

(G ◦ H)(X) = G(H(X)).

In terms of letter-place algebras, � is generated by a single alphabet5 X, while �⊗ is generated
by an infinite collection of disjoint alphabets, hence �⊗ ∼= Tens Tens[x1 + x2 + x3 + · · ·].
In this way, using associativity, we can extend the various structures obtained in � to �⊗.
More technically speaking, �⊗ provides a symmetric monoidal category and the product and
coproduct maps M, m,�, δ (see below) are morphisms on �⊗.

2.5. Inner and outer coproducts

The canonical extension of the Schur scalar product to tensor powers of � is

(. | .) : �⊗ ⊗ �⊗ → Z
(2.12)

(. | .) |�⊗r ⊗ �⊗s = δrs

∏
k

(. | .)k

where (. | .)k denotes the scalar product in � ⊗ � applied to the kth factors on each side.
We use this scalar product to dualize the outer and inner products, and so define the outer

coproduct � and the inner coproduct δ—once more distinguished by case (notation from [44]):

Definition 2.1.

(�F | G ⊗ H) = (F | GH)
(2.13)

(δF | G ⊗ H) = (F | G � H)

4 The name may originate from λ-calculus, where one has a ‘for all’ quantifier establishing exactly the meaning
given in this section.
5 Possibly of only a single letter!
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Specifically, inserting a power sum basis, we can read that

�pi = pi ⊗ 1 + 1 ⊗ pi = θ(pi(X + Y ))
(2.14)

δpi = pi ⊗ pi = θ(pi(XY ))

and hence infer that these properties lift to Schur functions sλ or generic symmetric functions
f, g. Since they are dualized from associative products, these coproducts are coassociative,
and we can define the iterated coproducts

�0 = Id �1 = � �r = (� ⊗ Id) ◦ �r−1 = (Id ⊗ �) ◦ �r−1 (2.15)

and analogously for the inner coproduct δr . The outer coproduct � reads on Schur functions
in particular

�(sλ) =
∑

α

sλ/α ⊗ sα =
∑
αβ

Cλ
αβsβ ⊗ sα (2.16)

where α, β run over all possible partitions (however, only a finite number of terms contribute).
Note, that the Littlewood–Richardson coefficients now make up the comultiplication table6.

It is very convenient to hide the complexity of indexing of coproducts away via Sweedler
notation,

�(a) =
∑
(a)

a(1) ⊗ a(2)

(2.17)
(� ⊗ Id) ◦ �(a) =

∑
(a)

a(1) ⊗ a(2) ⊗ a(3)

where the sum is also usually suppressed. If a distinction between Sweedler indices is needed,
we may use the Brouder–Schmitt convention [10] that

�(a) =
∑
(a)

a(1) ⊗ a(2) δ(a) =
∑
(a)

a[1] ⊗ a[2] (2.18)

keeping track of the type of coproduct involved. If partitions are involved, as for example in
Schur functions, we write simply

�(sλ) = sλ(1) ⊗ sλ(2) δ(sλ) = sλ[1] ⊗ sλ[2]. (2.19)

Having the scalar product and coproducts in hand, a natural status for the symmetric
function skew product can be recognized7, as the natural action of dual elements of � derived
from the outer coproduct:

sµ\λ = ((µ|.) ⊗ Id) ◦ �(λ) = (sλ(1) | µ)sλ(2)

= sλ(1)(µ | sλ(2)) = (Id ⊗ (µ|.)) ◦ �(λ) = sλ/µ. (2.20)

As noted already, for the inner coproduct this dual action is identical to � itself.

Definition 2.2. The counits ε�, εδ of the two coproducts are

ε�(pλ) := δλ,0
(2.21)

(ε� ⊗ Id) ◦ �(pn) = ε�(pn) ⊗ 1 + ε�(1) ⊗ pn = pn

6 They should be called section coefficients in this context, and the indices should be arranged as C
αβ
λ . We stay,

however, with the standard convention to prevent possible confusion.
7 Technically, the adjoint of outer product as an element of End(�)—the so-called Foulkes derivative (see Macdonald
loc cit).
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εδ(pλ) := 1
(2.22)

(εδ ⊗ Id) ◦ δ(pn) = εδ(pn) ⊗ pn = pn.

In summary, the unit of the outer product is the constant symmetric function s0, and the
corresponding outer counit is the projection onto s0; the unit of the inner product is given by
the series H(t) at t = 1, while the inner counit is given by projecting all power sums to 1.

2.6. Hopf algebra and bialgebra structures

Since we deal with symmetric products and a self-dual space with respect to the Schur scalar
product, we can verify that �⊗ is a symmetric tensor category with trivial braiding8, i.e. for
V,W ∈ �⊗

sw(V ⊗ W) = W ⊗ V. (2.23)

Given the two products, outer M and inner m, and the two coproducts, outer � and inner δ,
it is natural to investigate which pairs have additional bialgebra or Hopf algebra structure.
Moreover, it is well known from Hopf algebra theory that one can form convolution products
from a pair of a coproduct and a product, so we have four possible convolutions and the
question arises as to which of these convolutions admit antipodes.

Case 1. The outer product and outer coproduct M,�:

Theorem 2.3. The septuple H = (�, M, 1M,�, ε�, sw, S) is a Hopf algebra (denoted as the
outer Hopf algebra of symmetric functions).

Proof. We know already associativity, coassociativity and unit, counit from which the
convolutive unit follows, so we need to show (i) the compatibility axiom for product and
coproduct to form a bialgebra, (ii) the existence of the antipode.

(i) Consider the image of �(sλ) under θ−1,

sλ(x, y) =
∑

α

sα(x)sλ/α(y) = θ−1(sλ(1) ⊗ sλ(2)). (2.24)

Computing the following product in two different ways gives

(a) sλ(x, y)sµ(x, y) = sλ/α(x)sα(y)sµ/β(x)sβ(y)

= s(λ/α)·(µ/β)(x)sα·β(y) = sλ·µ/α·β(x)sα·β(y)

(b) sλ(x, y)sµ(x, y) = sλ·µ(x, y)

= sλ·µ/ρ(x)sρ(y)

⇔ sλ·µ(1) ⊗ sλ·µ(2) = sλ(1)sµ(1) ⊗ sλ(2)sµ(2). (2.25)

From (a) = (b) we can conclude that the product is a coalgebra homomorphism, and the
coproduct is an algebra homomorphism, showing the compatibility axiom.

(ii) We have to show that the antipode S defined as∑
α

S(sα) · sλ/α = 1M ◦ ε�(sλ) = δλ0 (2.26)

8 Hall–Littlewood symmetric functions and q-Kostka–Foulkes polynomials would be associated with the introduction
of a non-trivial grade group (see the concluding remarks below).
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exists. This can be done by using a recursive argument as in Milnor and Moore [37].
From this one obtains in lowest orders that

S(sλ) = (−1)|λ|sλ′ . (2.27)

From generating functions we know that in �,

H(t)E(−t) = 1
(2.28)∑

r

(−1)n−rhren−r = δn0 =
∑

r

(−1)n−r s(r)s(1n−r )

which could be extended9 to �⊗ via the Jacobi–Trudi formulae; however, we will take
another route. Using λ-ring notation we find with Macdonald [35, pp 29–43] that in �⊗

the following holds:

sλ(x, y) =
∑

µ

sλ/µ(x)sµ(y),=
∑
µ,ν

Cλ
µνsµ(x)sν(y)

sλ(X + Y ) =
∑

µ

sλ/µ(X)sµ(Y )

(2.29)
sλ(X − X) =

∑
µ

sλ/µ(X)sµ(−X)

sλ(0) =
∑

µ

(−1)|µ|sλ/µ(x)sµ′(x)

from which we obtain the desired result10 noting that s(0)(0) = 1 and sλ(0) = 0 for
λ �= (0). �

Note that the antipode is related up to a sign factor to the ω-involution of Macdonald, which
yields just the transpose of the partition, ω(sλ) = sλ′ . It is this sign factor which turns the
antipode into a Möbius-like function, inherited from the underlying poset structure of the
lattice of diagrams.

Finally, note that the coproduct � may look quite different in other bases, e.g., in the
power sums we find as noted already

�(pn) = pn ⊗ 1 + 1 ⊗ pn �(1) = 1 ⊗ 1

�(p2
n) = �(pn)�(pn) = p2

n ⊗ 1 + 2pn ⊗ pn + 1 ⊗ pn (2.30)

(� ⊗ Id)�(pn) = pn ⊗ 1 ⊗ 1 + 1 ⊗ pn ⊗ 1 + 1 ⊗ 1 ⊗ pn.

Generally

�(pn) =
r∑

k=0

r!

k!(r − k)!
pk

n ⊗ pr−k
n =

r∑
k=0

(
r

k

)
pk

n ⊗ pr−k
n

�(l−1)(pn) =
∑

∑
ki=r

r!

k1! . . . kl!
pk1

n ⊗ pk2
n ⊗ · · · ⊗ pkl

n . (2.31)

9 Here and subsequently certain steps are framed in �⊗ rather than �. The ⊗ is occasionally omitted by abuse of
notation.
10 sλ(x, −x)n for a finite number of variables can be regarded as a symmetric function with compound argument
(xiyj ). Expanding w.r.t. {yj } = {1, −1} evaluates the superdimension of representations of GL(1/1) occurring in a
branching [12] from GL(n/n) to GL(n) × GL(1/1). These are all two-dimensional and typical, unless λ = 0, from
which the result follows.
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Aside. Relations of this type are quite common in ‘finite operator calculus’ [42]. The
above ‘addition theorem’ (see [35], p 43) is an analogue of the so-called Appell and Scheffer
sequences.

Case II. The outer product and inner coproduct M, δ:

Theorem 2.4. The algebra A = (�, M, 1M) and the coalgebra C = (�, δ, εδ) form a
bialgebra, but not a Hopf algebra.

Proof. We compute firstly the homomorphism property for the bialgebra,

(a) δ ◦ M(pn ⊗ pm) = δ(pnm) = pnm ⊗ pnm

(b) M ⊗ M(Id ⊗ sw ⊗ Id)(δ ⊗ δ)(pn ⊗ pm)

= M ⊗ M(pn ⊗ pm ⊗ pn ⊗ pm)

= pnm ⊗ pnm (2.32)

which shows (a) = (b) as needed. The antipode has to fulfil

S(pn)pn = 1M ◦ εδ(pn) =
∑
m

pm

zm

. (2.33)

Since the right-hand side contains terms of all grades m, but the left-hand side terms only have
grades which are multiples of n, and since the power sums are independent, this requirement
cannot be fulfilled. �

Case III. The inner product and outer coproduct m,�:

Theorem 2.5. The algebra A = (�, m, 1m) and the coalgebra C = (�,�, ε�) form a
bialgebra, but not a Hopf algebra.

Proof. We compute firstly the homomorphism property for the bialgebra,

(a) � ◦ m(pn ⊗ pm) = �(δnmznpn) = δnmzn(pn ⊗ 1 + 1 ⊗ pn)

(b) m ⊗ m(1 ⊗ sw ⊗ 1)(� ⊗ �)(pn ⊗ pm)

= m ⊗ m(pn ⊗ pm ⊗ 1 ⊗ 1 + pn ⊗ 1 ⊗ 1 ⊗ pm + 1 ⊗ pm ⊗ pn ⊗ 1

+ 1 ⊗ 1 ⊗ pn ⊗ pm)

= znδnmpn ⊗ 1 + znδnmzn1 ⊗ pn (2.34)

which shows (a) = (b) as needed. The antipode S�,m has to fulfil the following requirement

S(pn) � 1 + S(1) � pn = 1m ◦ ε�(pn). (2.35)

Firstly let n = 0, then the right-hand side reduces to 1m, while the left-hand side is 2S(1)1,
which implies that 2S(1) = 1m = ∑

n pn/zn. Hence, we find in the case n �= 0

S(pn) � 1 +
1

2
1m � pn = δn0

∑
m

pm

zm

(2.36)

which cannot be fulfilled. �

Case IV. The inner product and inner coproduct m, δ:

Theorem 2.6. The coalgebra C = (�, δ, εδ) and the algebra A = (�, �, 1m) do not form a
Hopf algebra, and not even a bialgebra.



1642 B Fauser and P D Jarvis

Table 1. Mutual product–coproduct homomorphisms.

I (�, M, S) Outer Hopf algebra
II (δ, M) Bialgebra
III (�, m) Bialgebra
IV (δ, m) Inner convolution

Proof. To show it is not Hopf, it suffices to see that there does not exist an antipode. We use the
power sum basis. Assuming the antipode is described by the operator S(pn) = ∑

m Snmpm,
we can compute

S(pn) � pn = 1m ◦ εδ(pn)∑
m

Snmpm � pn =
∑
m

1

zm

pm (2.37)

znSnnpn =
∑
m

1

zm

pm

which cannot be fulfilled due to the linear independence of the power sum functions. To show
that the structure is not a bialgebra we have to show that this pair of product and coproduct is
not mutually homomorphic, for example

(a) δ ◦ m(pn ⊗ pm) = δ

(
δnm

zn

pn

)
= δnmznpn ⊗ pn

(b) m ⊗ m (Id ⊗ sw ⊗ Id) (δ ⊗ δ)(pn ⊗ pm)

= m ⊗ m(pn ⊗ pm ⊗ pn ⊗ pm) = δnmz2
n(pn ⊗ pn). (2.38)

One cannot fulfil (a) = (b) due to the fact that the coproduct (or the product) would need to
be rescaled with

√
zn, which drops out of the ring of integers, or even the quotient field Q of

rational numbers. �

Aside. The lack of having an antipode in this case may not be so surprising as at first sight.
Remember that θ−1(δ(pλ(X))) = pλ(XY). Hence the antipode would require Y = 1/X,
which is beyond the ring � of symmetric functions11. The present problem may hence be
dubbed the ‘localization problem’ of the inner product, in analogy with the ‘localization’
process of enlarging a ring to its quotient field in algebraic geometry. Using divided powers
may provide a cure (see [22]).

The cases I–IV are summarized in table 1. Evidently the presence of inner (co)products
decreases the compatibility with Hopf algebra axioms. One can think about a slightly altered
definition of an inner antipode which would cure this, and allow four mutually related Hopf
algebras12.

2.7. Scalar product—Laplace pairing

A pairing is in general a map π : A⊗B → C. Particular pairings are actions • : G⊗M → M ,
multiplications µ : A⊗A → A or evaluations ev : A⊗A → Z. A pairing which is compatible
with a coproduct, i.e. forming a bialgebra, is called after Sweedler a measuring (for a theory
11 The introduction of X−1 as formal variables is considered, for example, in Crapo and Schmitt [11] or Borcherds
[7].
12 The candidates we have in mind are ζ -functions and Möbius functions, where the Möbius function replaces the
antipode. This still fits into the theory of λ-rings [30].
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of pairings and measurings see [45]). We will use the scalar-valued case in the present work
only, but note some more general cases.

Definition 2.7. A pairing is called a Laplace pairing [22] if it enjoys the following two
properties:

(i) (w | a · b) = (w(1) | a)(w(2) | b)

(ii) (a · b | w) = (a | w(1))(b | w(2)) (2.39)

and if the product and coproduct are mutually homomorphisms.

The name stems from the fact that these identities imply the expansion rules for determinants
in exterior, and permanents in symmetric, algebras. From the definitions, the Schur scalar
product generalized to �⊗, enjoys this crucial property with respect to the outer Hopf algebra:

Theorem 2.8. The Schur scalar product is a Z-valued Laplace pairing with respect to the
outer product and coproduct:

({λ} | {µ} · {ν}) = ({λ(1)} | {µ})({λ(2)} | {ν})
({µ} · {ν} | {λ}) = ({µ} | {λ(1)})({ν} | {λ(2)}).

Proof. This follows from the fact that the outer coproduct was introduced by duality from the
outer product, and that (�, M) form a bialgebra (case I). �

Note that the corresponding property for inner product and coproduct does not constitute a
Laplace pairing because of the lack of compatibility (table 1, case IV). From the coalgebra
structures, cases I–III, more general Laplace properties can be inferred, for non-scalar pairings,
given here for completeness:

Theorem 2.9.

(i) The skew product satisfies the (partial) Laplace conditions with respect to the outer and
inner products:

({λ} · {µ})/{ν} = ({λ}/{ν(1)}) · ({µ}/{ν(2)})
({λ} � {µ})/{ν} = ({λ}/{ν(1)}) � ({µ}/{ν(2)}).

(ii) The inner product is a �⊗-valued Laplace pairing with respect to the outer product:

{λ} � ({µ} · {ν}) =
∑

({λ(1)} � {µ}) · ({λ(2)} � {ν})
({λ} · {µ}) � {ν} =

∑
({λ} � {ν(1)}) · ({µ} � {ν(2)}).

Proof. Part (i) refers to the outer Hopf algebra (case I) and the inner coproduct/outer product
bialgebra (case II), interpreted for the dual action (2.20)—note, however, that sλ/µ �= sµ/λ in
general. Part (ii) applies directly for the dual action from the outer coproduct–inner product
bialgebra (case III). Finally, note that the inner coproduct–inner product convolution algebra
does not admit the Laplace property. �

Of course, these formulae are known [32, 48, 2]. However, the above reasoning shows that
they emerge from a single principle, which in turn generates Wick-like expansions (see [17,
18, 34], where such expansions are treated in detail; for the fermion–boson correspondence
see [3] and [25, 23] for diagram strip decompositions and determinantal forms). The amazing
computational power of the Laplace identities cannot be underestimated.
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2.8. Kostka matrices

An immediate consequence of the observation that the Schur scalar product is a Laplace
pairing is the fact, that it allows us to give a direct formula for the Kostka matrix in terms of
the Littlewood–Richardson coefficients [35]. The Kostka matrix is defined as the transition
matrix M from monomial functions to Schur functions K = M(s,m). Since (mλ) and (hλ)

are dual w.r.t. the Schur scalar product, and the Schur functions are self-dual, one obtains the
transition matrix K∗ = M(s, h) for the basis change from complete symmetric functions to
Schur functions. Noting that (dot is the outer product here) hn = s(n), hλ = hλ1 · . . . · hλr

,
we compute (Sweedler indices as superscripts; note that (λi) is a one part partition and not a
Sweedler index)

K∗(s, h)µλ = (sµ | hλ)

= (
sµ

∣∣ s(λ1) · . . . · s(λr )

)
= (

�(r−1)(sµ)
∣∣ s(λ1) ⊗ · · · ⊗ s(λr )

)
=

∑(
s(1)
µ

∣∣ s(λ1)

)
. . .

(
s(r)
µ

∣∣ s(λr )

)
=

∑
α1,...,αl

C
µ

(λ1)α1
C

α1
(λ2)α2

. . . C
αl−2

(λl−1)αl

≡
∑

µ

∏
i

(
s(i)
µ

∣∣ s(λi )

)
(2.40)

where the Littlewood–Richardson coefficients emerge from the coproduct, and C
µ

λ(0) = δ
µ
λ has

been used.
Of course, similar calculations are possible for M(h, s),M(e, s), M(s, e), etc. From

Macdonald [35] (6.3)(3) one concludes further that if (u′), (v′) are bases dual to (u), (v) then

M(u′, v′) = M(u, v)′ = M(u, v)∗ (2.41)

holds, which shows that K∗(s, h) = K(s,m) since s ′ = s.
Note that the above expansion can be used to compute the scalar product of the monomial

and the complete symmetric functions in the following way,

M(m,m)∗λ,µ = M(h, h)λµ = (hλ | hµ)

=
∑ ∑ ∏ ∏(

s
(j)

(λi )

∣∣ s
(i)

(µj )

)
. (2.42)

The double sum and product is reminiscent of the fact that we have to expand both sides of

the original scalar product. Especially interesting is the fact that

Lemma 2.10.

(i) M(e,m)λµ = ∑
ν KνλKν ′µ is the number of matrices of 0 and 1 with row sums λi and

column sums µj .
(ii) M(h,m)λµ = ∑

ν KνλKνµ is the number of matrices of non-negative integers with row
sums λi and column sums µj .

Proof. Macdonald [35], (6.6)(i) and (ii) �

The Hopf algebraic expansion is done by using the fact that one can introduce a resolution of
the identity,

M(e,m) = M(e, s)M(s,m) = M(s,m)M(h′, s)
(2.43)

M(h,m) = M(h, s)M(s,m) = M(s,m)M(h, s)

and using the above expansions.
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3. Basic Hopf algebra cohomology

In this section we want to exploit the basic facts about Hopf algebra cohomology as developed
by Sweedler [46]. Firstly we note the well-known theorem that

Theorem 3.1. Every coassociative coalgebra map � induces face operators ∂i
n and

coboundary maps ∂n from H⊗n

to H⊗n+1
as follows:

∂i
n : H⊗n → H⊗n+1

∂i
n = 1 ⊗ · · · ⊗ � ⊗ · · · ⊗ 1 ith place

∂n : H⊗n → H⊗n+1
∂n =

∑
i

∂i
n =

∑
i

(−1)i1 ⊗ · · · ⊗ � ⊗ · · · ⊗ 1 ith place

with ∂ : H⊗ → H⊗ ∂ :=
∑

n

∂n ∂n+1 ◦ ∂n = 0. (3.44)

Proof. An inspection of the face maps ∂i
n shows that due to coassociativity, the coboundary

maps ∂n obey the desired relation, ∂n+1 ◦ ∂n = 0. �

In fact, we will not use this setting, but one pulled down from λ-ring addition to Hopf algebra
convolution. Let cn ∈ hom(H⊗n

, Z) be a normalized unital n-linear form, which we call
n-cochain. Unitality is the property that c(x1 ⊗ · · · ⊗ 1 ⊗ · · · ⊗ xn) = e for any occurrence
of a unit. Since the λ-ring addition is given by the convolution—see the appendix—we will
write the cohomology multiplicatively with respect to this outer convolution (M,�).

Definition 3.2. The convolution product of two n-cochains cn, c
′
n is given as

(cn ∗ c′
n)(x

1 ⊗ · · · ⊗ xn) = cn

(
x1

(1) ⊗ · · · ⊗ xn
(1)

)
c′
n

(
x1

(2) ⊗ · · · ⊗ xn
(2)

)
(3.45)

which is Abelian and associative. Define cn ∗ cm = 0 if n �= m. An n-cochain is assumed to
be normalized cn(1 ⊗ · · · ⊗ 1) = 1, and hence known to be invertible c−1

n ∗ cn = ε⊗n = e.

Aside. The inverse was given by Milnor and Moore for general homomorphisms under
convolution by a recursive formula [37] (the inverse of the identity map Id : H⊗ → H⊗ is by
definition the antipode13.) Since we will be able to use closed formulae for inverses in what
follows, we need not take recourse in a computationally inefficient recursive definition.

We may now follow Sweedler and the development in [9] and define the coboundary operator
acting on n-cochains in a multiplicative way w.r.t. convolution. See the appendix for the
relation to λ-ring addition.

Definition 3.3.

∂0
ncn−1(x

1 ⊗ · · · ⊗ xn) := ε(x1)cn−1(x
2 ⊗ · · · ⊗ xn)

∂i
ncn−1(x

1 ⊗ · · · ⊗ xn) := cn−1(x
1 ⊗ xixi+1 · · · ⊗ xn)

∂n
n cn−1(x

1 ⊗ · · · ⊗ xn) := cn−1(x
1 ⊗ · · · ⊗ xn−1)ε(xn) (3.46)

∂ncn := ∂0
ncn ∗ ∂1

nc−1
n ∗ ∂2

ncn ∗ · · · ∗ ∂n
n c±1

n

∂n+1 ◦ ∂n = e with e := ε ⊗ · · · ⊗ ε.

We will denote the coboundary map simply as ∂ if the context is clear.

Note that since we wrote the cohomology multiplicatively, the trivial element is the identity
e = ε⊗, the n-fold tensor product of the counit. Furthermore, the alternating sum of face
13 The recursive formula of Milnor and Moore reduced to this case has been rediscovered recently in the context of
QFT and is called the ‘Connes–Kreimer’ antipode formula.
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maps
∑ ±∂i

n translates into a ‘see-saw’ product of maps and inverse maps. We can use the
coboundary map to classify n-cochains as follows:

Definition 3.4. An n-coboundary bn ∈ Bn is an n-cochain fulfilling bn = ∂cn−1. An n-cocycle
cn ∈ Zn is an n-cochain fulfilling ∂cn = e. An n-cochain which is neither a coboundary nor
a cocycle will be called generic.

It follows from the definition that an n-coboundary is an n-cocycle. Furthermore, the
n-cocycles form an Abelian group under convolution. Hence, one may build the quotient
of n-cocycles by n-coboundaries to form the nth cohomology group, Hn = Zn/Bn. Indeed,
this allows one to compute, e.g., the ‘Betti’ numbers of the complex (see [31]). From [9] we
may take the characterization of 1-cocycles to be

Theorem 3.5. A 1-cochain is a 1-cocycle if and only if it is an algebra homomorphism,

e(sλ ⊗ sµ) = ∂c1(sλ ⊗ sµ) =
∑

α

∑
β

c1(sα)c1(sβ)c−1
1 (sλ/αsµ/β) = ε(sλ)ε(sµ)

⇔ c1(sλsµ) = c1(sλ)c1(sµ) (3.47)

where we have used the outer Hopf algebra in the convolution and exemplified the condition
on a Schur function basis. This basic fact will suffice to make some observations and
classifications in what follows related to the Schur function series introduced by Littlewood.

3.1. Littlewood–King–Wybourne infinite series of Schur functions

Littlewood [32] gave a set of Schur function series, which allowed him to formulate various
identities in an extremely compact notation. These identities have been extended by King
et al [27] and later by Yang and Wybourne [50]; we follow the presentation of the latter.

An S-function series is an infinite formal sum of Schur functions given via a generating
function. It turns out that the most basic Schur function series is the so-called L-series,

L =
∞∏
i=1

(1 − xi) (3.48)

from which the others may be derived. It is possible to give the S-function content of the series

L =
∞∑

m=0

(−1)ms(1m) =
∞∑

m=0

(−1)m{1m} (3.49)

where we have introduced the common notation {λ} of Littlewood for a Schur function sλ.
Furthermore, it is convenient to follow Yang and Wybourne to introduce the conjugate (with
respect to transposed partitions) series and the inverse conjugate series as

L† = (L̃)−1 = L̃−1

=
∞∏
i=1

(1 + xi)
−1 =

∞∑
m=0

(−1)m{m}. (3.50)

Note that taking the conjugate is equivalent to the transformation xi → −xi , which can
be viewed as a plethysm (written with the concatenation symbol ◦ as before),

L = L(−xi)
−1 = (−{1}) ◦ L−1. (3.51)
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Table 2. S-function series: type, name = product, Schur function content and plethysm.

L L = ∏
i (1 − xi)

∑
m(−1)m{1m} L(xi) {1} ◦ L

L−1 M = ∏
i (1 − xi)

−1 ∑
m{m} L(xi)

−1 {1} ◦ L−1

L̃ P = ∏
i (1 + xi)

−1 ∑
m(−1)m{m} L(−xi)

−1 (−{1}) ◦ L

L† Q = ∏
i (1 + xi)

∑
m{1m} L(−xi) (−{1}) ◦ L−1

A A = ∏
i<j (1 − xixj )

∑
α(−1)ωα/2{α} L(xixj )(i < j) {12} ◦ L

A−1 B = ∏
i<j (1 − xixj )

−1 ∑
β {β} L(xixj )

−1(i < j) {12} ◦ L−1

Ã C = ∏
i�j (1 − xixj )

∑
γ (−1)ωγ /2{γ } L(xixj )(i � j) {2} ◦ L

A† D = ∏
i�j (1 − xixj )

−1 ∑
δ{δ} L(xixj )

−1(i � j) {2} ◦ L−1

V = Ṽ V = ∏
i (1 − x2

i )
∑

p,q (−1)p{p̃ + 2q, p} L(x2
i ) ({2} − {12}) ◦ L

V −1 = V † W = ∏
i (1 − x2

i )−1 ∑
p,q (−1)p{p + 2q, p} L(x2

i )−1 ({2} − {12}) ◦ L−1

For a Hopf algebraic approach to plethysm see [44]. The other series are then derived in
a similar manner, see [50]. S-function series come in pairs which are mutually inverse and
consecutively named. One finds

AB = 1 CD = 1 EF = 1, . . . LM = 1 PQ = 1, . . . V W = 1, . . .

(3.52)

which may be arranged as in table 2, following [50]. The remaining series are E = LA,F =
L−1A−1,G = L†A,H = L̃A−1, R = LL̃ and S = L−1L†. The partitions {α} associated
with the A series are defined as follows (in Frobenius notation):

(α) = (a1a2 · · · ar | a1 + 1a2 + 1 · · · ar + 1) (3.53)

and for the B,C and D series, {β} is the transpose of {α}, {δ} has only even parts and {γ } is
its transpose. {ε} (not in the table, but related to E) has only self-conjugate partitions and {ζ }
(not in the table, but related to F) contains all partitions. Finally, ωλ indicates the weight of
the partition under consideration.

3.2. Cochain induced branching operators and series

The series in the above subsection play a fundamental role in the theory of group characters.
We will show now, in which way these series are related with the action on � of a special
class of endomorphisms14. In the following, we are interested in those endomorphisms of the
ring of symmetric functions, which can be derived from 1-cochains. We introduce lower case
symbols φ for 1-cochains, and the related operators /� : � → �, denoted by upper case
letters, in the following way (cf (2.20)):

Definition 3.6. An invertible branching operator is an endomorphism /� based on a 1-cochain
φ via

/�(sλ) := (φ ⊗ Id ) ◦ �(sλ) =
∑

α

φ(sα)sλ/α (3.54)

such that φ(sµ) ∈ Z.

We will now use the above-displayed results on cohomology to characterize the resulting
maps.
14 As will be discussed below, analogous endomorphisms also play a considerable role in QFT, where they are related
to time, operator and normal ordering of quantum fields (see also [9]).
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3.2.1. Skewing by a series. In group branching laws and formal S-function manipulations,
one is interested in computing the skews of a particular irreducible representation described
by a partition λ, with the elements of the series under consideration. Consider for example M,

sλ/M =
∑
m∈M

sλ/(m) = sλ/(0) + sλ/(1) + sλ/(2) + · · · (3.55)

where the resulting set of terms is actually finite, since sλ/µ is zero if the weight of µ is greater
than the weight of λ. In view of the outer coproduct,

�(sλ) = sλ/(0) ⊗ s(0) + sλ/(1) ⊗ s(1) + sλ/(12) ⊗ s(12) + sλ/(2) ⊗ s(2) + sλ/O(3) ⊗ sO(3) (3.56)

(where O(3) means terms of weight equal or higher than 3) it is clear that a 1-cochain (linear
form) can be defined to act on one tensor factor such that the resulting terms form the /M

skew series of sλ. Generically for an arbitrary series �, the 1-cochain φ is the corresponding
‘characteristic function’,

φλ ≡ φ(sλ) =
{

1 if λ ∈ �

0 otherwise.
(3.57)

This motivates a posteriori the name branching operator given to the above-defined operators
/�, and henceforth we adopt the notation �∼= /� (see below).

Lemma 3.7. The inverse branching operator is

�−1 = (φ−1 ⊗ Id ) ◦ � (3.58)

where the inverse of the 1-cochain φ is with respect to the outer convolution.

The outer product is trivial here since the value of the 1-cochain is in Z.

Proof. We compute the composition of the two operators directly using coassociativity of the
outer coproduct

�−1(�(sλ)) =
∑
α,β

φ−1(sα)φ(sβ/α)sλ/β =
∑

β

ε(sβ)sλ/β = sλ. (3.59)

�

Thus the obvious inverse operation, skewing by the inverse series (with respect to the outer
product), has an internal structure governed by outer convolution at the level of the underlying
1-cochain. Finally, this allows us to form the following new product Mφ , which will be set in
a more general context in the next section.

Definition 3.8. The φ-deformed outer product Mφ is defined as

Mφ(f ⊗ g) = f ◦φ g = �−1(M(�(f ) ⊗ �(g))). (3.60)

3.2.2. Classifying branching operators. From cohomology we know already that there are
cochains of different types, for example, 1-cocycles and generic 1-cochains (there are no 1-
coboundaries). Hence, we expect that this difference shows up in the nature of the branching
operators induced by these 1-cochains.

Trivial 1-cochain. The trivial 1-cochain is the counit. By definition, the counit acts such that
the coproduct action is void, and we get as branching operator for the trivial 1-cochain, the
identity.
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1-cocycles. From the cohomology we learned that the property of being a 1-cocycle φ is
equivalent to being an algebra homomorphism, φ({λ} · {µ}) = φ({λ})φ({µ}), alternatively
written as (sλ · sµ)/� = sλ/� · sµ/�. The same is true for the inverse 1-cocycle φ−1. This
allows us to state that

Lemma 3.9. The outer product M and the φ-deformed outer product Mφ are isomorphic if
and only if φ is a 1-cocycle.

Proof. This follows directly from the definition, and the fact that the inverse branching
operator is also an algebra homomorphism. �

Hence we find

φ is a 1-cocycle ⇔ φ ∈ alg-hom((�⊗,M), (�⊗,M)). (3.61)

As we will see later, these deformed products are far from being empty constructs. Indeed,
we have a coalgebra action and an augmentation, the counit ε, and one checks easily that

Lemma 3.10. The augmented outer (comodule) algebras (�⊗, M, ε) and (�⊗, Mφ, ε) are
non-isomorphic.

Proof. Since the counit is not transformed, it acts differently on the two algebras. �

Indeed, the isomorphic structures are related by adopting as the φ-deformed counit

ε → ε ◦ � = φ ∗ ε ≡ φ (3.62)

which is in general different from ε. This may be worth exemplification, so for a general �

we compute the action of ε on s(1) · s(1) and s(1) ◦φ s(1):

(a) ε(s(1) · s(1)) = ε(s(2) + s(12)) = 0

(b) ε(�−1(�(s(1)) · �(s(1)))) = ε ◦ �−1((s(1)φ0 + s0φ(1)) · (s(1)φ0 + s0φ(1)))

= ε ◦ �−1(s(1) · s(1) + 2φ(1)s(1) + φ(1)
2)

= φ(12)
−1 + φ(2)

−1 + φ(1)
2 (3.63)

which is �=0 in general. (In the last line the normalization φ0
−1 = φ0 = 1 and the definition

of ε has been used).

Generic 1-cochain. For generic 1-cochains the above consideration fails, hence we can only
state that a deformed outer product Mφ based on a generic 1-cochain is non-isomorphic to the
original outer product. The relation between these two products will become clear in the next
section.

3.2.3. Classifying series. In summary, the cohomological properties of the 1-cochains
classify the associated branching operators �. Besides the identity, we get those based
on 1-cocycles which produce isomorphic products, and generic ones. Since we defined the
S-function series using branching operators, we can in turn classify the series into three families
according to the underlying cochains: those based on coboundaries (empty for 1-cochains),
those based on cocycles and those based on generic cochains.

Theorem 3.11. The series derived from branching operators based on 1-cocycles φ fulfil

{λ · µ}/� = {λ}/� · {µ}/� (3.64)

reflecting the homomorphism property.
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Proof. Note that /� was defined as (φ ⊗ Id)◦�. Using the product–coproduct homomorphism
axiom of bialgebras we compute

(φ ⊗ Id)(� ◦ M) = (φ ⊗ φ ⊗ M)(Id ⊗ sw ⊗ Id)(� ⊗ �) (3.65)

which, after reformulating using /� yields the assertion. �

It is now a matter of explicit calculation to check which series fulfil the cocycle property.
The generic case (for the remaining series) comes up in two different forms depending on the
appearance of the antipode. One finds

Theorem 3.12.

(i) Branching operators based on the series L,M,P,Q,R, S, V,W fulfil (3.64).
(ii) Branching operators based on generic 1-cochains of the B,D,F,H series satisfy

{λ · µ}/� =
∑

ζ

{λ}/(ζ · �) · {µ}/(ζ · �). (3.66)

(iii) Branching operators based on generic 1-cochains of the A,C,E,G series satisfy15

{λ · µ}/� =
∑

ζ

{λ}/(ζ · �) · {µ}/(S(ζ ) · �)

=
∑

ζ

(−1)ωζ {λ}/(ζ · �) · {µ}/(ζ ′ · �). (3.67)

where the summation is over all Schur functions ζ (i.e. using the F series).

Proof. The proof and further material in this direction can be found in [6, 27, 28]. A direct
proof is based on formal evaluation of the outer coproduct, based on (2.14). For the series D
(table 2) we have, for example

D(x, y) =
∏
i�j

(1 − xixj )
−1

∏
��m

(1 − yky�)
−1

∏
k,n

(1 − xkyn)
−1

= D(x)D(y)
∑

ζ

sζ (x)sζ (y)

=
∑

ζ

D(x)sζ (x) · D(y)sζ (y)

where the fundamental Cauchy identity has been used in the second line [35]. �

We shall call the series L,M,P,Q,R, S, V,W group-like, because of the above outer
coproduct property and in view of (3.64) (see below). In fact, it is easy to see that the
above argument goes through for any series defined by a generating function of the form
� = ∏

i (1 − f (xi))
s for some polynomial f (x). Note finally that the second two lists are

made from mutually inverse elements A,B;C,D;E,F and G,H .

3.3. Products versus orderings

It is worth noting at this stage that a structural analogy in relation to products and operator
ordering can be seen with quantum physics. Just as there both normal and time ordered products
are needed, so too in symmetric function theory different products induced by branching
operators emerge: the rings (�, M) and (�, Mφ) related by a cocycle are φ-isomorphic (but
differ under the augmentation by the co-unit, ε)16. In order to derive further Hopf-algebraic
15 Recall that ζ ′ is the partition conjugate to ζ .
16 This analogy is elaborated in the concluding remarks below in terms of an active versus passive analysis of the role
of the branching endomorphisms.
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motivated insights into these formulae, we need to consider 2-cochains, and reconsider the
Schur scalar product and its convolutive inverse in a more elaborated approach to deformed
products, namely that of cliffordization.

4. Cliffordization

4.1. Definition

The first occurrence of a cliffordization is to our knowledge in Sweedler [46], where it was
derived from a smash product in a cohomological context. Later, Drinfeld [13] invented the
twisting of products, also induced by a Hopf algebraic construction related to a smash product.
The term ‘Cliffordization’ was coined in [40, 41]. There a coalgebra structure was also
employed, but not in general a Hopf algebra, and the combinatorial aspects were emphasized.
Since we follow the direction taken by Rota in the treatment of symmetric functions, it seems
reasonable to stick to this technical term. A more Hopf-algebraic motivated approach is
included in [9].

Let us assume that we start with a Hopf algebra, but focus our interest for the moment on
the algebraic part of it. Given a linear space underlying an algebra, we are interested to induce
a family of deformed products using a pairing. Special properties of the pairing will ensure
special properties of the deformed product. In general, such a pairing should be a measuring,
to keep the Hopf algebraic character of the whole structure [45]. However, we will drop this
requirement. The resulting structure is a comodule algebra, hence an algebra with a coaction,
which is not necessarily a bialgebra or Hopf.

Definition 4.1. A self-pairing is a linear map π : �⊗ ⊗ �⊗ → �⊗. A scalar pairing has Z

as codomain.

We will be interested in scalar self-pairings. Indeed, we have already made use of the ‘natural’
pairing of symmetric functions, that is, the Schur scalar product. This allows us to give the
following:

Definition 4.2. A cliffordization is a deformation of a comodule, or possibly a Hopf, algebra
(�, ·) into a twisted comodule algebra on the same space � equipped with the circle product

x ◦ y =
∑

π(x(1) ⊗ y(1))x(2) · y(2).

The name cliffordization17 stems from the fact that if π is a ‘scalar product’ and (V ∧,∧) a
Grassmann algebra, then ◦ is the endomorphic Clifford product induced by π [18, 19].

In the case of Schur functions a twisted or cliffordized product can be given by the Schur
scalar product or its inverse playing the role of the pairing π . From Hopf algebra theory we
know further that the inverse of a 2-cocycle, w.r.t. the convolution, is given by acting with the
antipode in the first or second argument,

π(x ⊗ y) = π(S(x) ⊗ S(y)) π(x ⊗ y)−1 = π(S(x) ⊗ y) = π(x ⊗ S(y)) (4.68)

which allows the introduction of the (off-diagonal) convolutive inverse Schur scalar product
in terms of the transpose as

(sλ | sµ)−1 = (−1)ωµ(sλ | sµ′). (4.69)

17 The ‘circle product’ is not to be confused with plethysm, which will play no role for the moment.
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Thus the scalar product cliffordizations read

sλ ◦ sµ =
∑
α,β

(sα | sβ)sλ/α · sµ/β

=
∑

α

sλ/α · sµ/α

(4.70)
sλ ◦S sµ =

∑
α,β

(−1)ωβ (sα | S(sβ))sλ/α · sµ/β

=
∑

α

(−1)ωα sλ/α · sµ/α′

since the Schur functions are orthogonal. Clearly the two formulae in (4.70) and those in
(3.66) and (3.67) are based on the Schur scalar product and its inverse, up to the additional
appearance of a series. The situation is summarized in the following section.

4.2. Classifying 2-cochains and cliffordization

Scalar pairings can be regarded as 2-cochains. It is therefore convenient to classify them in
analogy with the 1-cochains. We find the following:

Trivial 2-cochain. The trivial 2-cochain is the map e⊗2 = ε ⊗ ε. Hence in substituting
π = e⊗2

in (4.70) one sees that the product just remains unaltered, and this yields the identity
deformation.

2-coboundaries. A 2-coboundary is a pairing which is derived from a 1-cochain via the
coboundary operator, π = ∂φ for a 1-cochain c1 ≡ φ. Looking at (3.46) for the case n = 2
(see (3.47) for the expansion of the convolution products in Sweedler notation) we see that
these 2-cochains are of the form

πφ(x ⊗ y) = ∂φ(x ⊗ y) = φ(x(1))φ(y(1))φ
−1(x(2)y(2)). (4.71)

This shows that the group-like deformations by a series can be equally well addressed as a
cliffordization by a 2-coboundary. In fact, one is able to rearrange the φ-deformed outer
product in the form

Mφ(x ⊗ y) = �−1(M(�(x) ⊗ �(y)) ≡
∑

πφ(x(1) ⊗ y(1))x(2) · y(2) (4.72)

if and only if the 2-cochain π is a coboundary [18].

2-cocycles. A 2-cocycle is characterized by ∂π = e. It is well known from Hopf algebra
theory, and from the theory of ∗-product deformations that deformations induced by a 2-
cocycle yield associative products (for details see [9] and references therein). Moreover, since
our 2-cochains are assumed to be normalized, they are invertible. One finds

(◦φ)φ−1 = ◦φ∗φ−1 = ◦e (4.73)

showing the invertibility of the deformation process. For the case of symmetric functions and
the Schur scalar product and its inverse, the cliffordizations are (4.70), as already noted above.

Generic 2-cochains. The deformed circle product based on a generic 2-cochain cannot be
associative and we will here not consider such deformations.

Mixed 2-cocycles and 2-coboundaries. It is possible to draw the analogy that 2-coboundaries
are topological ‘gauges’, while the 2-cocycles are generic topological ‘fields’. Since the
space of cocycles, boundary or not, forms a group, we can pick a section in the orbits of
2-coboundaries, i.e. gauge the 2-cocycles by adding a 2-coboundary as
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π = c2 ∗ ∂c1. (4.74)

Taking one of the formulae from (4.70) and a 2-coboundary which we know to be derived
from a 1-cochain, that is from a series, we have

x ◦φ y =
∑

((· | ·) ∗ ∂φ)(x(1) ⊗ y(1))x(2) · y(2)

(4.75)
x ◦S,φ y =

∑
((· | S(·)) ∗ ∂φ)(x(1) ⊗ y(1))x(2) · y(2)

which can be rewritten in the form analogously to (3.66) and (3.67) (for the generic cases of
theorem 3.12),

(sλ · sµ)/� =
∑

(sα | sβ)sλ/(α�) · sµ/(β�)

=
∑

sλ/(α�) · sµ/(α�)

(4.76)
(sλ · sµ)/S� =

∑
(sα | S(sβ))sλ/(α�) · sµ/(β�)

=
∑

(−1)ωα sλ/(α�) · sµ/(α′�)

where we have used (4.71) and (sλ/α)/� = sλ/(α�). Hence we proved the following two
lemmas:

Lemma 4.3. Equations (3.66) and (3.67) are cliffordizations w.r.t. the Schur scalar product or
its inverse, in convolution with a 2-coboundary induced by an S-function series (or branching
operator). These formulae are precisely the Newell–Littlewood products (see below).

Lemma 4.4. The two instances of the formulae in (3.66) and (3.67) are mutually inverse to
one another if the involved series are mutually inverse, e.g., A,B; C,D; etc.

4.3. Eight possible Cliffordizations

To finish the technical parts of the discussion of cliffordization, we want to present an overview
on what kind of open possibilities remain to be explored. Indeed, looking at the stock of
‘natural’ structures in symmetric function theory, we find the Schur scalar product and its
inverse, the outer and inner products and the outer and inner coproducts. Examining the
definition of cliffordization, one notes that it involves two coproducts, one 2-cocycle and 1
product. If we consider the inverse Schur scalar product not as essentially different from the
Schur scalar product, then we find a total of eight different possibilities to employ the inner
and outer products and coproducts in cliffordization. We obtain the cliffordizations and the
grades for products of homogenous elements as

f ◦1 g =
∑

π(f(1) ⊗ g(1))M(f(2) ⊗ g(2)) |n| ⊗ |m| → ⊕r |n + m − 2r|
f ◦2 g =

∑
π(f(1) ⊗ g(1))m(f(2) ⊗ g(2)) |n| ⊗ |m| → ⊕rδnm|n − r|

f ◦3 g =
∑

π(f[1] ⊗ g(1))M(f[2] ⊗ g(2)) |n| ⊗ |m| → |m|
f ◦4 g =

∑
π(f[1] ⊗ g(1))m(f[2] ⊗ g(2)) |n| ⊗ |m| → δn,m−n|n|

(4.77)
f ◦5 g =

∑
π(f(1) ⊗ g[1])M(f(2) ⊗ g[2]) |n| ⊗ |m| → |n|

f ◦6 g =
∑

π(f(1) ⊗ g[1])m(f(2) ⊗ g[2]) |n| ⊗ |m| → δn−m,m|m|
f ◦7 g =

∑
π(f[1] ⊗ g[1])M(f[1] ⊗ g[1]) |n| ⊗ |m| → δnm|2n|

f ◦8 g =
∑

π(f[1] ⊗ g[1])m(f[1] ⊗ g[1]) |n| ⊗ |m| → δnm|n|
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where we used the Brouder–Schmitt convention on coproducts and M, m for the outer and inner
product of symmetric functions. The right column displays the grades obtained in multiplying
two homogenous elements of grades |n| and |m|. Of course, any 2-cocycle induces in this way
eight cliffordizations. This raises the question about a classification of all 2-cocycles acting
on the ring of symmetric functions �⊗2

. While we have considered the Schur scalar product
for the ring ⊗Z�, the appearance of Hall–Littlewood symmetric functions and Macdonald
symmetric functions clearly shows that these cases are tied to ring extensions. From Scharf
and Thibon’s approach to inner plethysm [44] (p 33) it is obvious that the change of one
structure map in a convolution changes its properties dramatically. One finds

f +� g ⇔ M ◦ (f ⊗ g) ◦ �
(4.78)

f ·� g ⇔ M ◦ (f ⊗ g) ◦ δ.

Hence changing the coproduct from outer to inner changes the λ-ring operation induced by
convolution from addition to multiplication (see the appendix). In fact, this is the source of the
difference between the outer and inner branching rules. This observation gives a hint, as to the
way in which the above cliffordizations may change if inner products and coproducts replace
the outer products and coproducts. A few quite amazing properties can be easily derived, but
we will not enter this subject here.

4.4. Branching rules: U(n)↓O(n); U(n)↓Sp(n); O(n)↑U(n); Sp(n)↑U(n) and product
rules: Sp(n)×Sp(n)↓Sp(n),O(n)×O(n)↓O(n)

The above-discussed relations for Schur functions reflect their interpretation as universal
characters [29]. We will not deal with the problem of modification rules needed for actual
evaluation of the reduced group characters, but follow in our presentation King loc cit. Our aim
thereby is to make clear in this section the connection between the Hopf algebraic approach
and the group theory. The basic starting point is Weyl’s character formula

ch(�) =
∑
w∈W

ε(w) ew(�+ρ)
/ ∑

w∈W

ε(w) ew(ρ) (4.79)

where � is the highest weight vector, ρ is half the sum of the positive roots and W is
the appropriate Weyl group with ε the sign of w. The Cartan classification of the simple
complex classical Lie groups is given by the series An,Bn, Cn and Dn, not to be confused
with Schur function series. They correspond to the complexified versions of the groups
SU(n+1), SO(2n+1), Sp(2n) and SO(2n). These groups can be considered as subgroups of
unitary groups U(N) for N = n+1, 2n+1, 2n and 2n. Denoting eigenvalues as xk = exp(iφk)

and x̄k = x−1
k one can write the eigenvalues of group elements in the following way:

SU(n + 1) x1, x2, . . . , xn with x1x2 · · · xn = 1

SO(2n + 1) x1, x2, . . . , xn, x̄1, x̄2 · · · x̄n, 1
(4.80)

Sp(2n) x1, x2, . . . , xn, x̄1, x̄2 · · · x̄n

SO(2n) x1, x2, . . . , xn, x̄1, x̄2 · · · x̄n.

The connection to the group characters is obtained by inserting the eigenvalues into the Weyl
character formula and interpreting the exponentials as

eλ = x
λ1
1 x

λ2
2 · · · xλn

n λ = (λ1, . . . , λn). (4.81)
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In the case of U(n), the Weyl group is just the symmetric group (on n letters). Hence, the
characters are labelled by partitions and the Weyl character formula turns into the defining
relation of the Schur functions. Let µ be the conjugacy class of the permutation. One finds

chµ(λ) =
∑
w∈Sn

ε(w) ew(λ+ρ).µ
/ ∑

w∈Sn

ε(w) ew(ρ.µ) (4.82)

where ρ = (n − 1, n − 2, . . . , 1, 0). Both numerator and denominator reduce to determinants
after inserting the xi (the denominator being the van der Monde determinant), and the quotient
of the two alternating functions is a standard construction of the Schur function [35].

Let us introduce the standard notation for group characters

U(n) chµ(λ) = {λ}(x)n

O(n) chµ(λ) = [λ](x)n (4.83)

Sp(n) chµ(λ) = 〈λ〉(x)n.

It is well known that one has the following relations using S-function series:

U(n) ↓ O(n) {λ}(x) = [λ/D](x)

O(n) ↑ U(n) [λ](x) = {λ/C}(x)
(4.84)

U(n) ↓ Sp(n) {λ}(x) = 〈λ/B〉(x)

Sp(n) ↑ U(n) 〈λ〉(x) = {λ/A}(x).

In fact, this justifies the name branching operator for the operators which we had defined in
(3.54), at least in the cases A,B, and C,D. Looking at the table (3.53) that A,B are derived
from the basic L series by a plethysm with {12}, reflecting the fact that symplectic groups have
antisymmetric bilinear forms as metric, while C,D are related to the plethysm of the L series
with {2}, reflecting this time the fact that orthogonal groups are based on symmetric bilinear
forms.

We noted above that formula (3.64) is valid for generating functions of the form∏
(1 ± f (xi)), for polynomial f . This was the origin of these series being group-like,

and could be tied to a 1-cocycle ensuring that the ‘branching operator’ gave an algebra
homomorphism. In this sense only a trivial branching process is involved (although the
transformation involved could be very complicated in detail). As an example, one might look
at the series V,W in table (2), which being plethysms by ({2} − {12}) ≡ p2 are group-like,
since V = L

(
x2

i

)
,W = L

(
x2

i

)−1
. This may be summarized in the statement

Lemma 4.5. All group-like series � = ∏
i (1 − f (xi))

s (based on 1-cocycles) induce trivial
branchings, i.e. branchings equivalent to U(n).

We noted above, that 1-cocycles cannot induce non-trivial 2-cocycles, since by definition
∂c1 = e. For a product deformation we would need a non-trivial 2-cocycle, at least a
2-coboundary, hence this outcome is in full accord with our cohomological classification.

Finally, the non-trivial series not based on 1-cocycles are no longer algebra
homomorphisms, and one cannot expect that the branching law for characters remains valid.
Thus the A,B and C,D series are not group-like. However, the defect from being a
homomorphism is fully compensated by the cliffordization w.r.t. the Schur scalar product
or its inverse, as shown in (3.66), (3.67), and (4.76), respectively. This is a well-known fact
and describes the product rules of the groups Sp(n) and O(n), which can equally be seen as
the branching rules Sp(n)×Sp(n)↓Sp(n),O(n)×O(n)↓O(n):
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Theorem 4.6. (Newell–Littlewood [38, 33])

Sp(n) 〈λ〉⊗〈µ〉 =
∑

ζ

〈(λ/ζ ) · (µ/ζ )〉
(4.85)

O(n) [λ]⊗[µ] =
∑

ζ

[(λ/ζ ) · (µ/ζ )]

where · is the outer product of S-functions, / the S-function quotient and ⊗ is the Kronecker
tensor product18 of the universal characters.

In fact, we found in lemma 4.4 that the inverse of the branchings given by the Newell–
Littlewood theorem is given by the cliffordized products ◦(.|S(.))∗�−1 , where the inverse
series is employed, but also the convolutive inverse Schur scalar product (. | S(.)). In
this way, the cliffordization w.r.t. the Schur scalar product provides the compensation for
the fact that the series acting in the branching are not homomorphisms. This reads
explicitly

f ◦(.|.)∗� g = �−1(�(f ) ◦(.|.) �(g))

= �−1
∑

(�(f(1)) | �(g(1)))�(f(2)) · �(g(2)). (4.86)

This beautiful result immediately raises the following questions, among others. Is it possible
to define other generic cliffordizations, i.e. inner products which are 2-cocycles, and what are
the corresponding series? Also, while it is clear that series such as L

(
x3

i

)
are still group-like,

it seems to be questionable if series with three or more independent variables can lead to an
associative multiplication, i.e. are based on a 2-cocycle. Hence the question, what kind of
‘branching rule’ can be derived for series of the form say {3} ◦ L, {21} ◦ L or {13} ◦ L? In
fact one awaits no ‘group’ here, since all classical groups are well known and exhausted by
the above cases.

5. Conclusions and analogy with quantum field theory

In this paper we have given a synthesis of aspects of symmetric function theory from the
viewpoint of underlying Hopf- and bi-algebraic structures. The focus has been on the explicit
presentation of basic definitions and properties satisfied by the fundamental ingredients—
outer and inner products and coproducts, units and counits, outer antipode, Schur scalar
product, skew product—with ramifications for Laplace pairings, Kostka matrices, Sweedler
cohomology and especially Rota cliffordizations. Our main result is that there is a rich class
of associative deformations isomorphic to the standard outer product (but non-isomorphic
as augmented algebras), and that the Newell–Littlewood product for symmetric functions of
orthogonal and symplectic type is an associative deformation non-isomorphic to the outer
product, derived from a 2-cocycle, up to a coboundary in the Sweedler sense. The conclusion
of our analysis is the recognition that, even at this level, many familiar constructs from the rich
theory of symmetric functions can be encapsulated by the organizing power of the co-world
of Hopf- and bi-algebras.

No attempt has been made to extend the analysis beyond the standard
symmetric polynomials–Hall–Littlewood, Macdonald, Jack, Kerov, MacMahon/vector,
factorial/hypergeometric, . . . symmetric functions should enter the Hopf framework at points
where the structure admits natural generalizations. For example, while we have considered

18 The notation ◦(|)∗B and ◦(|)∗D for the cliffordized products is perhaps more suggestive.
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the Schur scalar product for the ring ⊗Z�, the appearance of Hall–Littlewood and Macdonald
symmetric functions shows clearly the necessity for ring extensions and for the formerly
symmetric monoidal category to turn into a braided one. Thus, q-Laplace expansions (in the
context of a q-braided crossing) should play a crucial role in unveiling the nature of q-Kostka
matrices and q-Littlewood–Richardson coefficients. Further extensions of Q by irrationals
obtain from evaluating the q in the q-polynomials. Such a ring Q ⊗Z[v1,v2,...] � has a much
more interesting cohomology group and therefore should bear a rich class of possible different
cliffordizations (with non-cohomologous 2-cocycles).

Finally a disclaimer should be made that in the present work no attempt has been made
to address deeper issues of symmetric function theory such as outer and inner plethysms, the
role of vertex operators and the fermion–boson correspondence. For Hopf algebra approaches
to plethysm see [44]; the Littlewood–Richardson rule and the fermion–boson correspondence
is discussed in [3]. For matrix elements of vertex operators using composite supersymmetric
S-functions see [25] and [4] for vertex operators for symmetric functions of orthogonal and
symplectic type. Relations to inner plethysm are given in [43].

Several parallels between symmetric functions and combinatorial approaches to QFT
have been alluded to in the text. We conclude with an amplification of these points, which
may provide further motivation for the programme outlined here (see also [9]). An underlying
cornerstone in combinatorics and in its application to QFT is the following: given a set of
objects, called letters (or ‘balls’ if we use a combinatorial notion), one is interested in the
first instance in the relation of these objects (putting (weighted) balls together into boxes).
This level is given by the symmetric functions, or Tens[L] where L is the letter ‘alphabet’,
hence the variables {xi} (the balls). The grading of the tensor algebra imposes collections
inhabited by symmetric functions of n-variables (putting n-balls into boxes). Having objects
and morphisms, we are ready to form a category. In a second step, we are dealing with
deformations of operations, which live in EndTens[L]. This is asking for operations on
operations, or more physically speaking ‘parametrization’ of operations (putting boxes into
packages). Mathematically speaking we are dealing with a 2-category. In the theory of
symmetric functions, Schur functions are used as symmetric functions, hence sλ ∈ Tens[L]
(boxes with balls) and at the same time as polynomial functors (see [35] chapter I, appendix),
i.e. as operators on symmetric functions (packages collecting boxes). It was to our knowledge
Gian-Carlo Rota who made this explicit. Hence we are dealing with symmetric functions
from �(X)∼= Tens[L] and with endomorphisms living in �⊗ ∼= �(X, Y, . . .)∼= TensTens[L].
The process of moving up one step in a hierarchy or stack of categories, i.e. moving from
1-categories to 2-categories (to n-categories) is categorification [5].

The triply iterated structure alluded to here is perfectly mirrored in the process of second
quantization (coordinates → wavefunctions → functionals), and supports the suggestion that
some of the machinery of quantum field theory can be captured at the combinatorial level.
Recall for instance the role of Kostka matrices (lemma 2.10) in counting column and row sum
matrices. As mentioned, in quantum field theory the fields19 have to be considered as the
variables ‘x’, and hence the double Kostka matrices M(h,m) or M(e,m) = [aij ] appear as
exponents in expressions such as∑ ∑ ∏ ∏

(φi(x)|φj (y))aij (5.87)

where the aij are from M(e,m) for fermions and from M(h,m) for bosons, and the ‘scalar
products’ have to be replaced by suitable propagators. Details may be found in [10] or any
book on quantum field theory dwelling on renormalization.
19 Or currents, in a generating functional approach; formally, the label φ(x) should be associated with an element
[φ|x] of a letter-place alphabet in the sense of Rota [22].
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It was argued e.g., in [14–16, 18, 21] that the structure of a quantum field theory is
governed by two structures: the quantization, a bilinear form of the opposite symmetry type
from that of the fields, and the propagator, a bilinear form of the same symmetry type.
A detailed account of these findings in quantum field theory in Hopf algebraic terms is
given in [9], where also the cohomology is used as classifying principle. The same holds
true for symmetric function theory, and indeed a broader analogy between the algebraic
structures present in the symmetric functions and QFT comes by considering the deforming
products. As we defined the branching operators, they may be seen as ‘active’ endomorphisms
transforming any element of � into another such element, especially a Schur function into a
series {λ}/�, e.g. s(21)/M = ∑

m∈M s(21)/m = s(21) + s(2) + s(12) + s(1). Due to our construction,
these transformations are invertible. Writing this in a more Hopf algebraic flavour, we had:
�(sλ) = ∑

λ φ(sλ(1))sλ(2), and �−1(sλ) = ∑
λ φ−1(sλ(1))sλ(2). Looking at the structure of

quantum field theory, it was noted [8, 9, 17, 18] that this formula is nothing but a Wick
transformation from normal- to time-ordered field operator products. Considering the sλ

as the ‘normal-ordered’ basis, the above formula computes the ‘time-ordered’ expression
sλ/M in the ‘normal-ordered’ basis. Of course, time and normal-ordering is just a name
tag in the theory of symmetric functions. However, this opens up a second, ‘passive’,
perspective, which we believe to be a new result in the theory of symmetric functions.
Define a new dotted ‘outer product’, denoted by : for the moment20. The non-augmented
outer product algebras (�, ·) and (�, :) are isomorphic, hence there exists an isomorphism
sλ · · · · · sµ �→ sλ : · · · : sµ. With the artificial terminology, borrowed from quantum field
theory, this amounts to saying that the algebra isomorphism transforms the ‘normal-ordered’
outer product · into the ‘time-ordered’ dotted outer product :. In quantum field theory, however,
an additional structure must be taken into account which destroys the isomorphy—namely
the unique vacuum described by the counit. The same happens to be true for symmetric
functions, where the counit is the evaluation of the symmetric functions at xi = 0 for all xi .
This evaluation is different in time- and normal-ordered expressions, as we demonstrated in
(3.63). In summary, the structural analogy with QFT developed is that the ‘geometry’ –i.e.
the analogue of quantization—is induced by the Schur scalar product (or its inverse), while
the ordering structure or basis choice is maintained by the 2-coboundaries, or ‘propagators’
in the QFT language.

This paper has been concerned with symmetric function theory, as a potential laboratory
for quantum field theory. Given the importance of symmetry computations in multi-particle
quantum systems, as in quark models, the nuclear shell-model, the interacting boson and the
vibron model, spectrum generating groups, as well as exactly solvable models in quantum field
theory and statistical mechanics, and especially two-dimensional systems and the fermion–
boson correspondence, it is perhaps not surprising that a very close analogy can be found.
As far as symmetric function theory itself is concerned, questions raised by the present
study include for example a deeper Sweedler-cohomological classification of ring extensions,
and an associated classification of branching and product rules for the therewith-attached
(quantum) (affine) (non-compact) Lie (super) groups? Even the un-bracketed words in this
list of attributes come under scrutiny in the light of the above discussion of the possible role
of Littlewood’s series {3} ◦ L, {21} ◦ L or {13} ◦ L. Applications to extended, possibly non-
associative, algebraic structures which may relate to compositeness may be implied by the
present framework.

20 Dotted wedge products were introduced, e.g., in [20, 18]; in the present context the ‘dotted’ product is of course
that developed in section 4; see for example (4.86).
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Appendix. Hopf algebras versus λ-rings

A.1. Definition of λ-ring

Since we used in this paper partly λ-ring notion, it might well serve the reader to have the
definitions around and to explore the relations between λ-rings and Hopf algebras a little
further. Let R be a commutative unital ring. To form a λ-ring the following additional
requirements are imposed:

Definition A.1. A λ-ring is a ring R supplemented with the following structure maps (r, s ∈ R):

λ0(r) = 1

λ1(r) = r

λn(1) = 0 ∀n > 1

λn(r + s) =
∑

p+q=n

λp(r)λq(s) (A.88)

λn(rs) = Pn(λ
1(r), . . . , λn(r); λ1(s), . . . , λn(s))

(λn ◦ λm)(r) = λn(λm(r)) = Pn·m(λ1(r), . . . , λn·m(r))

where Pn and Pn·m are certain universal polynomials with integer coefficients [1, 30].

In fact, we can give the polynomials Pn and Pn·m in the case of symmetric functions as follows.
Let x = x1 + x2 + x3 + · · · be an alphabet of grade 1. Hence, we will consider the λ-ring
�(x) generated by this alphabet x. Introduce a second alphabet y = y1 + y2 + y3 + · · · and the
elementary symmetric functions for these two sets of indeterminates

(1 + e1(x)t + e2(x)t2 + · · ·) =
∏

i

(1 + xit)

(A.89)
(1 + e1(y)t + e2(y)t2 + · · ·) =

∏
i

(1 + yit).

Then Pn(e1(x), e2(x), . . . en(x), e1(y), e2(y), . . . , en(y)) is defined to be the coefficient of tn

in
∏

i,j (1 + xiyj t). Similarly Pn·m(e1(x), e2(x), . . . , en·m(x)) is the coefficient of tn in the
following product

∏
1�i1�i2�···�id�q(1 + xi1xi2 · · · xid t). Neither polynomial depends on q, r

if the number of variables is sufficiently large, and are called universal polynomials.
The well-known relation to formal power series is as follows [24]. Let R be any

commutative unital ring, then there is a functor � : ring → ring which assigns to R the
universal λ-ring �(R). Consider formal power series of the form

f (t) = 1 +
∑
i�1

ri t
i g(t) = 1 +

∑
i�1

si t
i (A.90)
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and define addition and multiplication in �(R) as

f (t) +� g(t) = 1 +
∑
i�1

( ∑
n+m=i

rnsm

)
t i

(A.91)
f (t) ·� g(t) = 1 +

∑
i�1

Pi (r1, . . . , ri; s1, . . . , si)t
i

where Pi is the polynomial appearing in the definition of the λ-ring. Furthermore, for any ring
homomorphism h : R → S one defines H : �(R) → �(S) as

H

1 +
∑
i�1

ri t

 = 1 +
∑
i�1

h(ri)t
i = 1 +

∑
i�1

si t
i (A.92)

where the ri ∈ R and the si ∈ S. This turns � into an endofunctor on ring. The action of λi

on elements of �(R) is defined to be

λi(f (t)) = 1 +
∑
j�1

Pi·j (r1, . . . , rij )t
j (A.93)

where the Pij are the polynomials of the definition of the λ-ring.
Further important λ-ring operations are the Adams operations, defined as

ψ1(r) = r ψn(ψm(r)) = ψm(ψn(r)) = ψn·m(r). (A.94)

Of course, from the definition of the λ-ring and these relations one reads that Adams operations
are connected with composition or plethysm and the power sum basis.

The λ-maps can be used to form a ring-map from R to �(R) which assigns to every r a
formal power series

λt : R → �(R) λt (r) =
∑
i�0

λi(r)t i = 1 +
∑
i�1

λi(r)t i = 1 +
∑
i�1

ri t
i . (A.95)

With this in mind, it is easily seen how the translation table in Macdonald [35 p 18] occurs.
One obtains the translations

x = x1 + x2 + · · · + xn + · · ·
er ↔ λr(x) rth exterior power

E(t) ↔ λt (x)

hr ↔ σ r(x) rth symmetric power (A.96)

H(t) ↔ σt (x) = λ−t (−x)

pr ↔ ψr(x) Adams operations

P(t) ↔ λ−1
−t (x)

d

dt
λ−t (x) = d

dt
log λ−t (x).

Rota and collaborators used letter-place super algebras for their works in invariant theory
and combinatorics [22], which is related to the λ-ring formalism as follows. Let L be an
alphabet of possibly signed letters—we assume positive letters to avoid sign problems. As
can be deduced from [40, 41], the theory of symmetric functions is derived from a letter-place
algebra of a single letter x, which therefore has to be considered in terms of λ-ring structures.
In fact, the ring � of symmetric functions is the free ring underlying the λ-ring �(X) in a
single variable, [35, p 17]. In this sense, Rota’s plethystic algebra Pleth[L] is concerned with
those parts of the λ-ring structure which are related with Pnm.
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A.2. Hopf algebraic aspects of λ-rings

Note that one can assign to a generating function such as H(t) a Toeplitz matrix, that is a band
matrix with entries hij = [hi−j ]. This morphism from generating functions to matrices turns
the pointwise product of ordinary polynomial sequence generating functions (opgf, [49]) into
the matrix product of Toeplitz matrices.

f (t) · g(t)∼=


f0 f1 f2 f3 · · ·
0 f0 f1 f2 · · ·
0 0 f0 f1 · · ·
0 0 0 f0 · · ·
...

...
...

...
. . .

 ◦


g0 g1 g2 g3 · · ·
0 g0 g1 g2 · · ·
0 0 g0 g1 · · ·
0 0 0 g0 · · ·
...

...
...

...
. . .



=


h0 h1 h2 h3 · · ·
0 h0 h1 h2 · · ·
0 0 h0 h1 · · ·
0 0 0 h0 · · ·
...

...
...

...
. . .


(A.97)

where hi = ∑
n+m=i fngm and hi = 0 if i < 0. Now, this can be easily recast in terms of a

convolution product of a coalgebra and an algebra map. Let

δ(t) = t ⊗ t µ(tr ⊗ t s) = t r+s (A.98)

then one finds using maps F : t → ∑
fit

i and G analogously,

(F ∗ G)(t) = µ ◦ (F ⊗ G) ◦ δ(t) = F(t) · G(t)

=
∑

n+m=i

fngmt i =
∑

i

∑
r

frgi−r t
i . (A.99)

Hence the pointwise product of generating functions can be understood as a convolution
algebra made from a coalgebra–algebra pair. Note that the convolution product is related to
λ-ring addition. Moreover, one can dualize this approach defining a suitable coproduct acting
on the coefficients of the generating functions. Therefore we define

�(en) =
n∑

r=0

er ⊗ en−r

(A.100)

�(en) = θ−1(�(en)(X + Y )) =
n∑

r=0

θ−1(er (X)en−r (Y ))

where we have used the map θ from section 2.4 to make the connection between tensor
formulations and formulation in λ-rings.

Aside. The crucial property of the maps λi is that they are similar to sequences of binomial
polynomials. These binomial sequences have been studied by Rota and collaborators for
quite a while [42]. It is shown there that every shift invariant operator gives rise to a set of
polynomials in such a way that they are Appell or Scheffer sequences (loc cit p 58), hence
fulfilling the property

pn(x + y) =
∑

s+r=n

(
n

r

)
ps(x)pr(y). (A.101)
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This relation, including the binomial coefficients, is related to exponential generating functions
(egf), and hence to the Adams operations and not directly to the λi maps. But it can be shown
that there are shift operators Ea which act as

Eapn(x) = pn(x + a) (A.102)

which is exactly the case for the λ1 and σ1 series in λ-ring notation

F(X)/λ1 = F(X − 1) F (X)/σ1 = F(X + 1). (A.103)

It would be extremely interesting to have explicitly the details of this relation, which involves
umbral calculus and umbral composition. The vertex operator �(1) ◦ F(X) = F(X)/σ1/λ1

embodies in combinatorial terms the principle of inclusion and exclusion (PIE), which is
understood in Hopf algebraic terms via the theory of species developed by Joyal [26].
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